A mutation in a Saccharomyces cerevisiae gene (RAD3) required for nucleotide excision repair and transcription increases the efficiency of mismatch correction.

نویسندگان

  • Y Yang
  • A L Johnson
  • L H Johnston
  • W Siede
  • E C Friedberg
  • K Ramachandran
  • B A Kunz
چکیده

RAD3 functions in DNA repair and transcription in Saccharomyces cerevisiae and particular rad3 alleles confer a mutator phenotype, possibly as a consequence of defective mismatch correction. We assessed the potential involvement of the Rad3 protein in mismatch correction by comparing heteroduplex repair in isogenic rad3-1 and wild-type strains. The rad3-1 allele increased the spontaneous mutation rate but did not prevent heteroduplex repair or bias its directionality. Instead, the efficiency of mismatch correction was enhanced in the rad3-1 strain. This surprising result prompted us to examine expression of yeast mismatch repair genes. We determined that MSH2, but not MLH1, is transcriptionally regulated during the cell-cycle like PMS1, and that rad3-1 does not increase the transcript levels for these genes in log phase cells. These observations suggest that the rad3-1 mutation gives rise to an enhanced efficiency of mismatch correction via a process that does not involve transcriptional regulation of mismatch repair. Interestingly, mismatch repair also was more efficient when error-editing by yeast DNA polymerase delta was eliminated. We discuss our results in relation to possible mechanisms that may link the rad3-1 mutation to mismatch correction efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical interaction between components of DNA mismatch repair and nucleotide excision repair.

Nucleotide excision repair (NER) and DNA mismatch repair are required for some common processes although the biochemical basis for this requirement is unknown. Saccharomyces cerevisiae RAD14 was identified in a two-hybrid screen using MSH2 as "bait," and pairwise interactions between MSH2 and RAD1, RAD2, RAD3, RAD10, RAD14, and RAD25 subsequently were demonstrated by two-hybrid analysis. MSH2 c...

متن کامل

Posttranslational inhibition of Ty1 retrotransposition by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p.

rtt4-1 (regulator of Ty transposition) is a cellular mutation that permits a high level of spontaneous Ty1 retrotransposition in Saccharomyces cerevisiae. The RTT4 gene is allelic with SSL2 (RAD25), which encodes a DNA helicase present in basal transcription (TFIIH) and nucleotide excision repair (NER) complexes. The ssl2-rtt (rtt4-1) mutation stimulates Ty1 retrotransposition, but does not alt...

متن کامل

Mms19 protein functions in nucleotide excision repair by sustaining an adequate cellular concentration of the TFIIH component Rad3.

Nucleotide excision repair (NER) is a major cellular defense mechanism against DNA damage. We have investigated the role of Mms19 in NER in the yeast Saccharomyces cerevisiae. NER was deficient in the mms19 deletion mutant cell extracts, which was complemented by the NER/transcription factor TFIIH, but not by purified Mms19 protein. In mms19 mutant cells, protein levels of the core TFIIH compon...

متن کامل

The nucleotide sequence of the RAD3 gene of Saccharomyces cerevisiae: a potential adenine nucleotide binding amino acid sequence and a nonessential acidic carboxyl terminal region.

The RAD3 gene of Saccharomyces cerevisiae is required for excision of pyrimidine dimers and is essential for viability. We present the nucleotide sequence of the RAD3 protein coding region and its flanking regions, and the deduced primary structure of the RAD3 protein. In addition, we have mapped the 5' end of RAD3 mRNA. The predicted RAD3 protein contains 778 amino acids with a calculated mole...

متن کامل

Arabidopsis UVH6, a homolog of human XPD and yeast RAD3 DNA repair genes, functions in DNA repair and is essential for plant growth.

To evaluate the genetic control of stress responses in Arabidopsis, we have analyzed a mutant (uvh6-1) that exhibits increased sensitivity to UV light, a yellow-green leaf coloration, and mild growth defects. We have mapped the uvh6-1 locus to chromosome I and have identified a candidate gene, AtXPD, within the corresponding region. This gene shows sequence similarity to the human (Homo sapiens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 144 2  شماره 

صفحات  -

تاریخ انتشار 1996